TLE5012BD
GMR-Based Angle Sensor
1
Overview
Features
•
Giant Magneto Resistance (GMR)-based principle
•
Fully redundant design with two sensor ICs in one package
•
Integrated magnetic field sensing for angle measurement
•
360° angle measurement with revolution counter and angle speed measurement
•
Two separate highly accurate single bit SD-ADC
•
15 bit representation of absolute angle value on the output (resolution of 0.01°)
•
16 bit representation of sine / cosine values on the interface
•
Max. 1.0° angle error over lifetime and temperature-range with activated auto-calibration
•
Bi-directional SSC Interface up to 8 Mbit/s
•
Supports Safety Integrity Level (SIL) with diagnostic functions and status information
•
Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM), Short PWM Code (SPC, based on
SENT protocol defined in SAE J2716)
•
Output pins can be configured (programmed or pre-configured) as push-pull or open-drain
•
Bus mode operation of multiple sensors on one line is possible with SSC or SPC interface
•
0.25 µm CMOS technology
•
Automotive qualified: -40°C to 150°C (junction temperature)
•
ESD > 4 kV (HBM)
•
RoHS compliant (Pb-free package)
•
Halogen-free
PRO-SIL™ Features
•
Test vectors switchable to ADC input (activated via SSC interface)
•
Inversion or combination of filter input streams (activated via SSC interface)
•
Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC
nibble for SPC interface
•
Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup
•
Two independent active interfaces possible
•
Overvoltage and undervoltage detection
Data Sheet
www.infineon.com
1
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Overview
Potential applications
The TLE5012BD GMR-based angle sensor is designed for angular position sensing in automotive applications
such as:
•
Electrical commutated motor (e.g. used in Electric Power Steering (EPS))
•
Steering angle measurements
•
General angular sensing
Product validation
Qualified for automotive applications. Product validation according to AEC-Q100.
About this document
This document is an addendum to the TLE5012B datasheet and describes the TLE5012BD dual die angle
sensor. For all parameters which are not specified here, the TLE5012B datasheet is valid.
Description
The TLE5012BD is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by
measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR)
elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle
orientation of the magnetic field (magnet).
The TLE5012BD is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up the
values of the fuses are written into flip-flops, where these values can be changed by the application-specific
parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime
can be improved by enabling an optional internal autocalibration algorithm.
Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that
is SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface.
Additionally four other interfaces are available with the TLE5012BD: Pulse-Width-Modulation (PWM) Protocol,
Short-PWM-Code (SPC) Protocol, Hall Switch Mode (HSM) and Incremental Interface (IIF). These interfaces can
be used in parallel with SSC or alone. Pre-configured sensor derivates with different interface settings are
available.
Table 1
Derivate ordering codes
Product type
Marking
Ordering code
Package
TLE5012BD E1200
121200
SP001205296
PG-TDSO-16
TLE5012BD E9200
129200
SP001205300
PG-TDSO-16
Data Sheet
2
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
2.1
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Dual Die Angle Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.2.1
4.3
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input/Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculation of the Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Pre-Configured Derivates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
IIF-type: E1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SPC-type: E9200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6
6.1
6.2
6.3
6.4
6.5
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Data Sheet
3
6
6
6
6
7
10
10
10
13
13
13
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Pin Configuration
2
Pin Configuration
16
15
14
13
12
11
10
9
Center of Sensitive
Area
1
2
3
4
Figure 1
Pin configuration (top view)
2.1
Pin Description
Table 2
Pin Description
5
6
7
8
Pin No.
Symbol
In/Out
Function
1
IFC1
(CLK / IIF_IDX / HS3)
I/O
Die 1 Interface C:
External Clock1) / IIF Index / Hall Switch
Signal 3
2
SCK1
I
Die 1 SSC Clock
3
CSQ1
I
Die 1 SSC Chip Select
4
DATA1
I/O
Die 1 SSC Data
5
DATA2
I/O
Die 2 SSC Data
6
CSQ2
I
Die 2 SSC Chip Select
7
SCK2
I
Die 2 SSC Clock
8
IFC2
(CLK / IIF_IDX / HS3)
I/O
Die 2 Interface C:
External Clock1) / IIF Index / Hall Switch
Signal 3
9
IFB2
(IIF_B / HS2)
O
Die 2 Interface B:
IIF Phase B / Hall Switch Signal 2
10
GND2
-
Die 2 Ground
11
VDD2
-
Die 2 Supply Voltage
Data Sheet
4
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Dual Die Angle Output
Table 2
Pin Description (cont’d)
Pin No.
Symbol
In/Out
Function
12
IFA2
O
(IIF_A / HS1 / PWM / SPC)
Die 2 Interface A:
IIF Phase A / Hall Switch Signal 1 /
PWM / SPC output
13
IFA1
O
(IIF_A / HS1 / PWM / SPC)
Die 1 Interface A:
IIF Phase A / Hall Switch Signal 1 /
PWM / SPC output
14
VDD1
-
Die 1 Supply Voltage
15
GND1
-
Die 1 Ground
16
IFB1
(IIF_B / HS2)
O
Die 1 Interface B:
IIF Phase B / Hall Switch Signal 2
1) External clock feature is not available in IIF or HSM interface mode
3
Dual Die Angle Output
The bottom sensor element of the TLE5012BD is flipped relative to the orientation of the top sensor element
Therefore the rotation direction sensed by the bottom element is opposite to the top element. This is
advantageous for safety critical applications, as the two sensor elements do generally not output the same
angle. Figure 2 shows the output of the two sensor ICs for a given external magnetic field orientation.
360°
top sensor output
bottom sensor output
sensor output angle
270 °
180 °
90°
0°
Figure 2
90°
180°
270°
external magnetic field angle
360 °
Dual die angle output
For applications where an identical angle output of both ICs is desired, the rotation direction and angle offset
of one sensor IC can be reconfigured by changing the settings in the ANG_BASE and ANG_DIR registers via SSC
interface.
Data Sheet
5
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Specification
4
Specification
4.1
Absolute Maximum Ratings
Table 3
Absolute maximum ratings
Parameter
Symbol
Values
Min.
Unit Note or Test Condition
Typ.
Max.
Ambient temperature
TA
-40
125 °C
Junction temperature
TJ
-40
150 °C
150 °C
qualification acc. to AEC Q100
grade 1
For 1000 h, not additive
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the device.
Table 4
ESD protection
Parameter
Symbol
Min.
ESD voltage
Unit
Values
Notes
Max.
VHBM
±4.0 kV
1)
VHBM
±2.0 kV
1)
VCDM
±0.5 kV
2)
VCDM
±0.75 kV
2)
ground pins connected
for corner pins
1) Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001
2) Charged Device Model (CDM) according to JESD22-C101
4.2
Characteristics
4.2.1
Input/Output characteristics
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values
correspond to a supply voltage VDD = 5.0 V and 25°C, unless individually specified. All other values correspond
to -40 °C < TJ < 150°C.
Table 5
Electrical parameters for 4.5 V < VDD < 5.5 V
Parameter
Symbol
Values
Min.
Input signal low-level
VL5
Input signal high level
VH5
Data Sheet
Typ.
Unit
Note or Test Condition
Max.
0.3 VDD
0.7 VDD
V
V
6
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Specification
Table 5
Electrical parameters for 4.5 V < VDD < 5.5 V (cont’d)
Parameter
Symbol
Values
Unit
Note or Test Condition
1
V
DATA;
IQ = -25 mA (PAD_DRV=’0x’),
IQ = -5 mA (PAD_DRV=’10’),
IQ = -0.4 mA (PAD_DRV=’11’)
1
V
IFA,B,C;
IQ = -15 mA (PAD_DRV=’0x’),
IQ = -5 mA (PAD_DRV=’1x’)
-10
-225
µA
CSQ
-10
-150
µA
DATA
10
225
µA
SCK
10
150
µA
IFA, IFB, IFC
Min.
Typ.
Output signal low-level VOL5
Pull-up current1)
IPU
2)
Pull-down current
IPD
Max.
1) Internal pull-ups on CSQ and DATA pin are always enabled.
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on
SCK is always enabled.
Table 6
Electrical parameters for 3.0 V < VDD < 3.6 V
Parameter
Symbol
Values
Min.
Input signal low-level
VL3
Input signal high level
VH3
Output signal low-level
VOL3
Pull-up current1)
IPU
2)
Pull-down current
IPD
Typ.
Unit
Note or Test Condition
Max.
0.3 VDD
0.7 VDD
0.8 VDD
V
V
V
DATA,SCK,CSQ,IFA,IFB
IFC
0.9
V
DATA;
IQ = -15 mA (PAD_DRV=’0x’),
IQ = -3 mA (PAD_DRV=’10’),
IQ = -0.24 mA (PAD_DRV=’11’)
0.9
V
IFA,IFB;
IQ = - 10 mA (PAD_DRV=’0x’),
IQ = -3 mA (PAD_DRV=’1x’)
-3
-225
µA
CSQ
-3
-150
µA
DATA
3
225
µA
SCK
3
150
µA
IFA, IFB, IFC
1) Internal pull-ups on CSQ and DATA pin are always enabled.
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on
SCK is always enabled.
4.3
Calculation of the Junction Temperature
The total power dissipation PTOT of the chips leads to self-heating, which increases the junction temperature
TJ above the ambient temperature.
Data Sheet
7
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Specification
The power multiplied by the total thermal resistance RthJA (junction to ambient) yields the junction
temperature. RthJA is the sum of the two components Junction to Case and Case to Ambient.
(4.1)
R thJA = R thJC + R thCA
TJ = T A + Δ T
Δ T = R thJA × PTOT = R thJA × (V DD × 2 I DD + VQ × 2 I Q )
(IDD, IQ > 0, if direction is into IC)
Q
Factors of 2 in the calculation account for the two sensor ICs in the TLE5012BD. Example (assuming no load on
Vout).
(4.2)
V DD = 5V
2 I DD = 28 mA
K
Δ T = 120 × (5 [V ]× 0 . 028 [ A ] + 0 [VA ]) = 16 . 8 K
W
For molded sensors, the calculation with RthJC is more appropriate.
Data Sheet
8
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Pre-Configured Derivates
5
Pre-Configured Derivates
Derivates of the TLE5012BD are available with different pre-configured register settings for specific
applications. The configuration of all derivates can be changed via SSC interface. A detailed table of settings
of the derivates can be found in the latest TLE5012B Register Setting User Manual.
5.1
IIF-type: E1200
The TLE5012BD-E1200 is preconfigured for Incremental Interface and fast angle update rate (42.7 μs). It is
most suitable for BLDC motor commutation.
•
Autocalibration mode 1 enabled.
•
Prediction disabled.
•
Hysteresis is set to 0.625°.
•
12bit mode, one count per 0.088° angle step.
•
Incremental Interface A/B mode.
5.2
SPC-type: E9200
The TLE5012BD-E9200 is preconfigured for Short-PWM-Code interface. It is most suitable for steering angle
and actuator position sensing.
•
Angle update time is 85.4 μs.
•
Autocalibration, Prediction, and Hysteresis are disabled.
•
SPC unit time is 3 μs.
•
SPC interface is set to open-drain output.
Data Sheet
9
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Package Information
6
Package Information
6.1
Package Parameters
Table 7
Package Parameters
Parameter
Symbol Limit Values
Unit
Notes
Min. Typ Max.
.
Thermal resistance1)
140 K/W
Junction to air2)
RthJC
35 K/W
Junction to case
RthJL
70 K/W
Junction to lead
RthJA
120
Moisture Sensitivity Level
MSL 3
Lead Frame
260°C
Cu
Plating
Sn 100%
> 7 μm
1) Rth values only valid for both dies supplied with VDD
2) according to Jedec JESD51-7
6.2
Package Outline
Figure 3
PG-TDSO-16 package dimension
Data Sheet
10
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Package Information
0.2
0.2
Figure 4
Data Sheet
Position of sensing element, reference to package
11
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Package Information
Figure 5
Position of sensing element, reference to lead frame
Table 8
Sensor IC placement tolerances in package
Parameter
Unit
Values
Min.
Notes
Max.
position eccentricity
-100
100 µm
in X- and Y-direction, reference to package
position eccentricity
-150
150 µm
in X-direction, reference to lead frame
position eccentricity
-200
200 µm
in Y-direction, reference to lead frame
rotation
-3
3 °
tilt
-3
3 °
Data Sheet
12
affects zero position offset of sensor
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Package Information
6.3
Footprint
Figure 6
Footprint of PG-TDSO-16
6.4
Packing
Figure 7
Tape and Reel
6.5
Marking
The device is marked on the frontside with a date code, the device type and a lot code. On the backside is a 8
x 18 data matrix code.
Position
Marking
Description
1st Line
Gxxxx
G = green, 4-digit = date code
2nd Line
12x200
Type (6 digits), See ordering Table 1
3rd Line
xxx
Lot code (3 digits)
Note:
Data Sheet
For processing recommendations, please refer to Infineon’s Notes on processing
13
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Package Information
Figure 8
Data Sheet
Marking
14
Rev. 1.3
2019-02-05
TLE5012BD
GMR-Based Angle Sensor
Revision history
7
Revision history
Revision Date
Changes
Rev. 1.3
New Template/New Logo
Update Electrical parameters: VH3 for IFC pin
Data Sheet
2019-02-05
15
Rev. 1.3
2019-02-05
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2019-02-05
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2019 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
Doc_Number
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.